EFFECTS OF BREFELDIN A ON THE EXPRESSION AND TRANSPORT OF INFLUENZA A VIRUS HAEMAGGLUTININ, M1 AND M2 PROTEINS WITHIN THE CELL

F. ČIAMPOR, E. ZÁVODSKÁ, D. CMARKO, J. CMARKOVÁ, E. VAREČKOVÁ

Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 842 46 Bratislava, Slovak Republic

Received April 4, 1997

Summary. – Brefeldin A (BFA) decreased the expression of influenza A virus haemagglutinin (HA) and M2 protein on the plasma membrane of virus-infected MDCK cells. It caused a retention of M1 protein in the cell nucleus and a decrease of its expression on the plasma membrane. On the other hand, an increased labelling of the cytoplasmic domain of M2 protein on the plasma membrane in BFA-treated cells was observed in contrast to the labelling in BFA-untreated cells. The effects of BFA on the microtubules and cellular motors are discussed.

Key words: influenza virus; MDCK cells; haemagglutinin; M1 protein; M2 protein; Brefeldin A

Introduction

The influenza virus M2 protein is a type III integral membrane protein consisting of 97 amino acids, a 23-residue N-terminal extracellular domain and a 54-residue C-terminal intracellular cytoplasmic domain (Lamb *et al.*, 1985); it represents an ion channel with a homotetramer structure (Sugrue and Hay, 1991; Holsinger and Lamb, 1991; Shimbo *et al.*, 1996) that is expressed at the surface of virus-infected cells but is a relatively minor component of influenza virions (Zebedee and Lamb, 1988; Čiampor, 1993).

Abbreviations: BFA = Befeldin A; BSA = bovine serum albumin; ER = endoplasmatic reticulum; FITC = fluorescein isothiocyanate; GAR-FITC = goat anti-rabbit IgG-FITC conjugate; GAM-TRITC = goat anti-mouse IgG-TRITC conjugate; HA = haemagglutinin; MEM = Eagle's Minimal Essential Medium; MoAb = monoclonal antibody; PBS = phosphate buffered saline; RT = room temperature; SRP = signal recognition particle; TGN = trans-Golgi network; TRITC = tetramethylrhodamine isothiocyanate; VSV = vesicular stomatitis virus

Amantadine and rimantadine are specific inhibitors of replication of influenza A viruses (Dolin *et al.*, 1982). An amantadine treatment of cells infected with influenza A viruses causes a M2 protein-mediated conversion of HA from its native to low-pH conformation. The structural alteration and hence drug action occur shortly after HA exits from the Golgi complex during its passage through the trans-Golgi region (Čiampor *et al.*, 1992a,b).

The influenza virus integral membrane proteins (HA, NA and M2) are synthesized on membrane-bound ribosomes and are translocated across the membrane of the endoplasmatic reticulum (ER) in an signal recognition particle (SRP)-dependent manner (Elder *et al.*, 1979; Hull *et al.*, 1988). The membrane proteins to be expressed at the plasma membrane are subsequently transported from the ER to the Golgi complex and beyond it via vesicular carriers that recycle between successive compartments along the pathway (Palade, 1975, 1982).

Such studies have been published in recent years as a result of the discovery of compounds that disrupt certain parts of the exocytotic pathway. One of them, BFA, is a hydrophobic fungal metabolite, an antiviral macrocyclic antibiotic isolated from *Penicilium brefeldinianum* Dodge

by Härri et al. (1963). Originally it was reported that BFA blocks the transport of secretory proteins from ER to the Golgi complex with subsequent extensive disorganization of the latter (Kato et al., 1989; Misumi et al., 1986; Oda et al., 1987; Takatsuki and Tamura, 1985).

In this paper, we describe the effects of BFA on the transport and expression of M2, HA and M1 proteins in the influenza A virus-infected MDCK cells.

Materials and Methods

Viruses and cells. Influenza virus A/chicken/Germany/34 (H7N1) Rostock strain was grown in 11-day-old fertile hens' eggs. MDCK cell monolayers were cultivated in Eagle's Minimal Essential Medium (MEM) supplemented with 5% foetal calf serum in a humidified atmosphere with 5% CO, at 37°C.

Antibodies. Anti-HA monoclonal antibody (MoAb) HC2, recognizing a peripheral domain of HA1 (site A), was produced against whole virus as described elswere (Sugrue *et al.*, 1990). Anti-M2 protein sera R53 and R54, raised in rabbits against C-terminal or N-terminal parts of M2 protein, were obtained from the National Institute for Medical Research, London, England (Grambas and Hay, 1992). The antisera R53 and R54 recognize the extracellular and cytoplasmic domains of M2 protein, respectively.

Anti-M1 monoclonal antibody (MoAb) 290 was prepared and characterized at the Institute of Virology, Bratislava (Varečková et al., 1995).

Infection and BFA-treatment of cells. MDCK cell monolayers on coverslips or microtiter plate wells were exposed to the virus at a multiplicity of infection of 10-100 PFU per cell for 1 hr at room temperature (RT) and then maintained in MEM with or without (control) 5 μ g/ml BFA at 37°C until examined.

Immunofluorescence light microscopy and double-labelling. Cell cultures on glass coverslips were placed on ice, briefly washed with cold phosphate-buffered saline (PBS) pH 7.2, fixed and per-

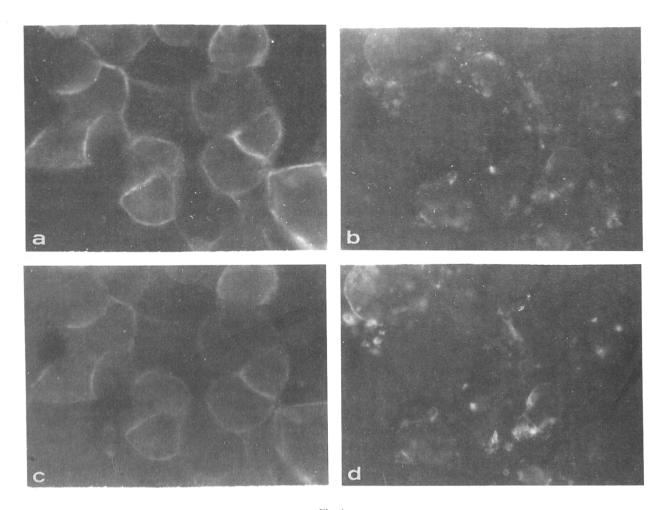


Fig. 1

Effect of BFA on the HA and M2 protein expression on the plasma membrane of virus-infected cells

16 hrs p.i. BFA-untreated (a,c) and BFA-treated (b,d) cells. Double labelling: HC2-GAM-TRITC (a,b); R53-GAR-FITC (c,d).

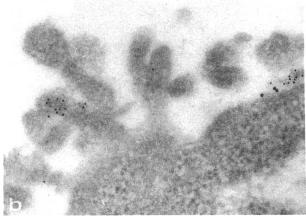


Fig. 2 Effect of BFA on the cell surface expression of M2 protein and HA in virus-infected cells 5.5 hrs p.i. BFA-untreated (a) and BFA-treated (b) cells. Double labelling: R53-GAR 5 nm gold; HC2-GAM 10 nm gold. Magnification 63,000 x (a)

meabilized with methanol at -20°C for 5 mins, or briefly washed with PBS at RT, fixed with 3% paraformaldehyde in PBS for 10 - 15 mins and washed with PBS at RT. To reduce a non-specific binding of antibodies, the cells were incubated with PBS containing 0.5% bovine serum albumin (BSA, IgG-free, Sigma) (PBS/BSA) for 2 x 15 mins before applying an antibody.

and 82,500 x (b).

MoAb HC2, anti-M2 serum and MoAb 290 were diluted with PBS/BSA 1:100, 1:50 and 1:20, respectively, and applied to the cell monolayers for 30 - 45 mins at RT. The cells were repeatedly washed with PBS/BSA and labelled with a 1:125 dilution of goat anti-rabbit IgG-FITC conjugate (GAR-FITC, Sigma) or with 1:125 dilution of goat anti-mouse IgG-TRITC conjugate (GAM-TRITC, Sigma) for 30 - 45 mins at RT. In double-labelling experiments, GAM-TRITC was used as a first label and after several washings in PBS/BSA the cell monolayers were labelled with GAR-FITC. The labelled monolayers were washed several times with PBS and mounted in an anti-bleaching solution. The samples were observed under a Carl Zeiss Jena light microscope equiped for epifluorescence (NPL Fluotar objective x 100/1.32).

Gold-immunolabelling for electron microscopy. The immunolabelling was performed on LR Gold-embedded sections, or directly on fixed cells (Čiampor et al., 1992a,b). Ultrathin sections were prepared on a Reichert OmU4 Ultracut FC ultramicrotome. The sections were stained with 2% aqueous uranyl acetate and lead citrate. The samples were examined under a Philips EM 300 electron microscope at 80 kV.

Enzyme-linked immunosorbent assay (ELISA) of influenza virus HA, M2 and M1 proteins in virus-infected cells was performed as follows. The cells on microtiter plate wells were fixed with 0.05% glutaraldehyde in PBS. ELISA was carried out on duplicate wells using ascitic fluids containing anti-HA MoAb HC2, anti-M2 polyclonal rabbit antibodies R53 or R54, anti-M1 MoAb 290, and antimouse and anti-rabbit horseradish peroxidase conjugates, respectively.

Results

Effect of BFA on the localization of HA and M2 protein on the cell surface of virus-infected cells

MoAb HC2, specific for the peripheral domain of HA, (site A), and antibodies R53 and R54, specific for extracellular and cytoplasmic domains of M2 protein, respectively, were used to localize the expression of the transmembrane viral proteins HA and M2 in influenza virus-infected cells (16 hrs p.i.) under the influence of BFA by immunofluorescence and immunogold electron microscopy, respectively.

As shown in Fig. 1a, MoAb HC2 localized the HA expression on the surface of virus-infected cells not treated with BFA. In contrast, as a consequence of the BFA effect on the Golgi complex, the labelling of the cell surface with MoAbs HC2 was reduced to small patches in BFA-treated cells (Fig. 1b).

The immunogold electron microscopy of cells labelled for HA showed a decoration of the cell surface with gold particles in BFA-untreated cells (Fig. 2a), but a reduced number of gold particles in BFA-treated cells (Fig. 2b).

Double labelling experiments with R53 antibody and MoAB HC2 recognizing the N-terminal domain of M2 protein and HA, respectively, localized both proteins in ER and Golgi complex compartments and on the cell plasma mem-

As shown in Fig. 1c, R53 antibody localized the M2 expression on the surface of virus-infected BFA-untreated cells. In contrast, in BFA-treated cells, the intensity of labelling of the cell surface was reduced and the fluorescence on the surface was not regular, but concentrated in small patches (Fig. 1d).

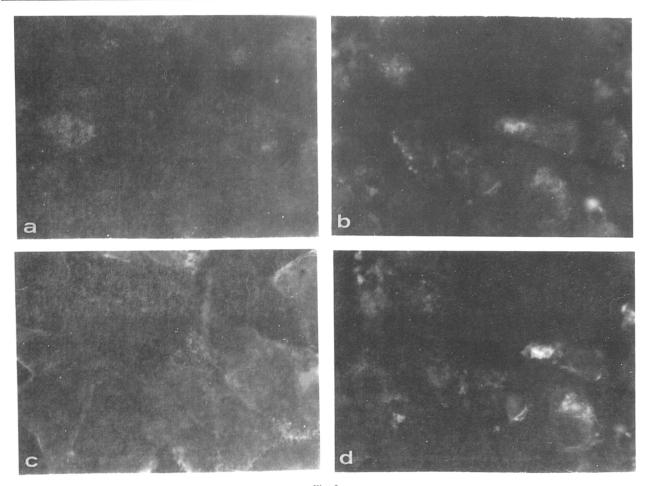


Fig. 3

Effect of BFA on the distribution and labelling of HA and the cytoplasmic domain of M2 protein on the plasma membrane of virus-infected cells

16 hrs p.i., double labelling. BFA-untreated cells: R54-GAR-FITC (a); HC2-GAM-TRITC (c). BFA-treated cells: R54-GAR-FITC (b); HC2-GAM-TRITC (d).

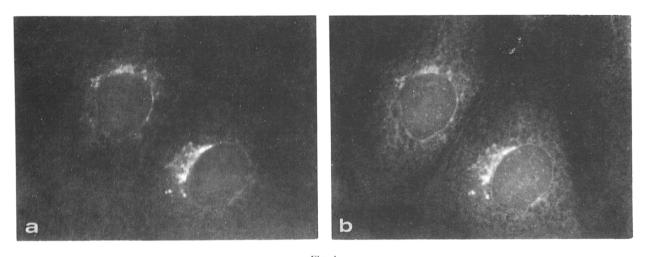


Fig. 4
Localization of HA and M2 protein in BFA-untreated virus-infected cells
5.5 hrs p.i., permeabilized cells. Labelling: HC2-GAM-FITC (a); R53-GAR-TRITC (b).

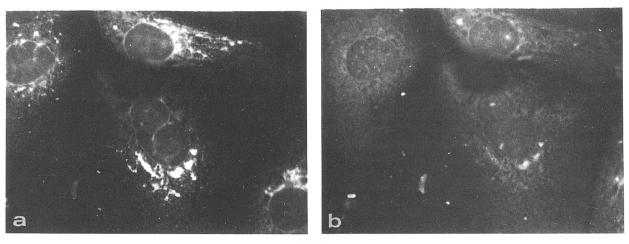


Fig. 5

Formation of HA- and M2 protein-enriched TGN-derived membrane tubules induced by BFA in virus-infected cells

5.5 hrs, permeabilized cells. Labelling: HC2-GAM-FITC (a); R53-GAR-TRITC (b).

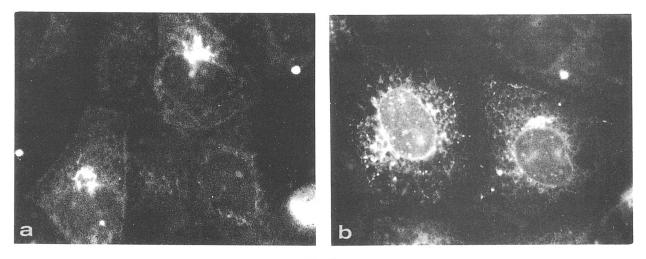


Fig. 6
Effect of BFA on the localization of the cytoplasmic domain of M2 protein in virus-infected cells
5.5 hrs p.i. BFA-untreated (a) and BFA-treated (b) cells. Labelling: R54-GAR-FITC.

On the other hand, the labelling of the virus-infected cell surface with R54 antibody was poor (Fig. 3a). In the virus-infected BFA-treated cells, labelled for M2 protein with R54 antibody, the labelling was observed just in small patches (Figs. 3b,c and 4d).

Effect of BFA on the localization of HA and M2 proteins in permeabilized virus-infected cells

Double labelling experiments localized both HA nad M2 protein in virus-infected cells 5.5 hrs p.i. juxtanuclearly, in rough ER and Golgi complex (Figs. 4a and 4b). BFA induced a rapid formation of HA- and M2 protein-enriched, TGN-derived membrane tubules, but did

not affect the medial part of Golgi complex (Figs. 5a and 5b).

Antibody R54 recognized M2 protein on the virus-infected cell surface very poorly (Fig. 3a), but in virus-infected permeabilized cells quite well. The labelling was localized in the juxtanuclear region and Golgi complex (Fig. 6a). In BFA-treated cells, antibody R54 similarly to antibody R53 labelled M2 protein-enriched, TGN-derived membrane tubules (Fig. 6b).

Effect of BFA on the localization of M1 protein on the surface and inside the permeabilized virus-infected cells

At 5.5 hrs p.i., we observed a cell surface labelling of M1 protein with MoAb 290 in BFA-untreated cells

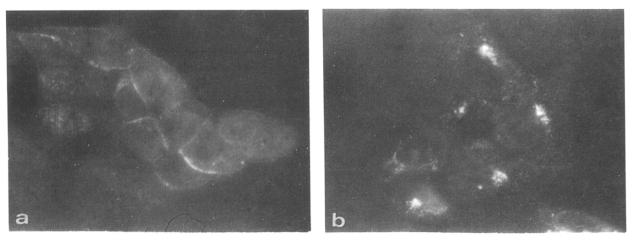


Fig. 7
Effect of BFA on the localization of M1 protein on the plasma membrane of virus-infected cells 5.5 hrs (a) and 16 hrs (b) p.i. BFA-untreated (a) and BFA-treated (b) cells. Labelling: 290-GAM-FITC.

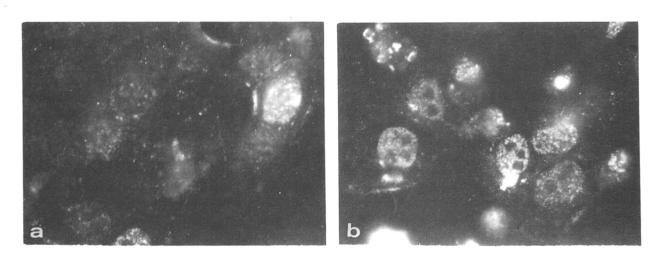


Fig. 8

Effect of BFA on the localization of M1 protein in virus-infected cells

16 hrs p.i., permeabilized cells. BFA-untreated (a) and BFA-treated (b) cells. Labelling: 290-GAM-FITC.

(Fig. 7a). At 16 hrs p.i. in BFA-treated cells, we observed no cell surface labelling of M1 protein, but just small patches of a fluorescent material (Fig. 7b).

In permeabilized virus-infected BFA-untreated cells, we detected a nuclear localization of M1 protein, but only small patches of a fluorescent material in the cytoplasm and on the cell surface (Fig. 8a). In BFA-treated cells, an increased nuclear labelling and a weak cell surface labelling of M1 protein was observed (Fig. 8b).

Effects of BFA on HA, M2 and M1 proteins in virusinfected cells as examined by ELISA

The ELISA examination of the localization of HA, M2 and M1 proteins on the surface of and in whole virus-infected cells under influence of BFA confirmed the results of the immunomicroscopic experiments. The influence of BFA on the distribution of the tested viral proteins in virus-infected MDCK cells is summarized in Table 1. BFA decreased the labelling of HA, M2 (as de-

tected by antibody R53) and M1 proteins on the cell surface, but increased that of M2 protein (as detected by antibody R54) on the cell surface and that of intracellular M1 protein.

Discussion

The trans-Golgi network (TGN) is an organelle engaged in the exocytosis and the site of the amantadine-induced, M2-mediated conversion of influenza A virus HA from its native to the low-pH conformation (Čiampor *et al.*, 1992a,b).

In contrast to the Golgi apparatus of MDCK cells, TGN is sensitive to BFA (Wagner $et\ al.$, 1994). At a concentration of 1µg/ml, BFA promoted extensive tubulation of TGN, while the medial Golgi marker alfa-mannosidase II was not affected. Extensive structural alterations of TGN were accompanied by functional disruptions, such as an extensive missorting of influenza HA, and by a release of the TGN-marker gamma-adaptin. These results suggest the involvement of BFA-sensitive adaptor proteins in the TGN-surface transport.

The data of Wood *et al.* (1991) showed that BFA causes a microtubule-mediated fusion of TGN with the early endosomes, and revealed a membrane transport cycle between TGN and the early endosomes, perhaps used for the secretion or delivery of molecules to the cell surface.

Pelham (1991) reviewed the recent data on multiple targets of BFA and on species-specific effects of BFA on the vesicular transport that suggest several distinct sites of action of BFA on the endomembrane system.

BFA inhibits the export of proteins from distal Golgi compartments to the cell surface of BHK-21 cells (Miller et al., 1992). The results of these authors suggested that BFA blocked the export via both the constitutive and regulated pathways. In contrast, the endocytosis and recycling of the vesicular stomatitis virus (VSV) G protein were not blocked by BFA, but it did block the constitutive secretion of glycosaminoglycan chains that had been synthesized and sulfatated in the trans-Golgi cisternae.

On the other hand, Low *et al.* (1992) showed a selective inhibition of protein targeting to the apical domain of BFA-treated MDCK cells.

The presented experiments confirm and extend further the data obtained in our earlier studies on the transport of HA and M2 protein in the cytoplasm of infected cells including the role of TGN in conformational changes of HA dependent on M2 protein (Čiampor *et al.*, 1992a,b; Čiampor, 1993), and on the effect of BFA on influenza virusinfected MDCK cells (Závodská *et al.*, 1995; Čiampor *et al.*, 1996). We also show additional results concerning the

Table 1. Influence of BFA (5 μ g/ml) on the distribution of virus proteins in influenza virus-infected MDCK cells as determined by ELISA

Virus	Antibodies	Cell surface*	Whole cell
proteins			
НА	HC2	61.5	85.8
Μŀ	290	83.7	125.1
M2	R53	73.5	91.0
M2	R54	116.0	98.3

*The ELISA values of the BFA-untreated controls were taken for 100%.

effect of BFA on the M1 protein transport from the nucleus to plasma membrane.

BFA inhibited the expression of HA as well as of M2 protein on the plasma membrane. HA at the plasma membrane was reduced to 61.5% and total HA to 85.8% of the control, respectively. A similar reduction was observed for the extracellular domain of M2 protein at plasma membrane (to 73.5%) and for the total one (to 91.0%).

Surprising results were obtained with the labelling of the cytoplasmic domain of M2 protein. In infected BFA-untreated cells, the labelling of the plasma membrane was regularly poor but strongly positive in BFA-treated cells. The corresponding intracellular labelling was not significantly affected by BFA (reduction to 98.3% only).

Similarly, M1 protein, which is normally transported directly from the cell nucleus to the plasma membrane and its transport does not depend on the Golgi complex, accumulated in BFA-treated cells in the cell nucleus and its expression on the plasma membrane was reduced.

Studies of Lippincott-Schwarz *et al.* (1989, 1990) showed that BFA caused a microtubule dependent redistribution of the Golgi complex in relation to ER and thus provided a morphological evidence for a retrograde, incompartmental transport pathway between the Golgi cisternae and the ER. In this article, we show that BFA first of all affects cytoskeletal proteins, microtubules and that all the changes in the transport pathway are the result of this primary effect. The accumulation of M1 protein in the cell nucleus observed by us corresponds to the results of Lippincott-Schwarz *et al.* (1989, 1990).

The increased labelling of the extracellular domain of M2 protein on the cell surface provokes a speculation that the position of transmembrane proteins in the plasma membrane of vesicles transporting via TGN depends not only on intramembraneous interactions but also on an interaction with cytoskeletal proteins, e.g. microtubules. The apical or basolateral transport of vesicles from TGN is affected by BFA (Low *et al.*, 1992).

BFA has multiple targets (Pelham, 1991), but our results comparing the transmembrane protein transported via the

Golgi stack or directly from the nucleus to the cell surface indicate one common target — cytoskeletal proteins, mainly the microtubules and cell motors. BFA by affecting the microtubules causes microtubule-mediated changes in the endocytosis and exocytosis pathways.

Our results represent only a partial support to this hypothesis an direct our attention to a more detailed investigation of the role of the microtubules and cell motors in these processes.

Acknowledgements. The authors thank Mr N. Dokoupil for excellent photographic documentation. This work has been supported by grants No. 95/5305/034 and No. 2/1241/95 of the Grant Agency for Science.

References

- Ciampor F, Bayley PM, Nermut MV, Hirst EMA, Sugrue RJ, Hay AJ (1992a): Evidence that the amantadine-induced M2-mediated conversion of influenza virus haemagglutinin to the low pH conformation occurs in an acid trans-Golgi compartment. Virology 188, 14-24.
- Čiampor F, Thompson CA, Grambas S, Hay AJ (1992b): Regulation of pH by the M2 protein of influenza A viruses. *Virus. Res.* **22**, 247–258.
- Čiampor F (1993): Electron microscopy and confocal scanning imaging system in the process of intracellular transport and conformational changes of virus structural proteins. Proceedings of Multinational Congress on Electron Microscopy, Parma, pp. 445–449.
- Čiampor F, Cmarko D, Cmarková J, Závodská E (1995): Influenza virus M2 protein and haemagglutinin conformation changes during intracellular transport. *Acta Virol.* **39**, 171–181.
- Čiampor F, Cmarko D, Závodská E (1996): Intracellular transport of influenza virus A haemagglutinin and M2 protein in Brefeldin A treated MDCK cells. *Proceedings of Inter*national Congress of Virology, Jerusalem, pp. 159.
- Dolin R, Reichman RC, Madore HP, Maynard R, Linton PN, Webber-Jones J (1982): A controlled trial of amantadine and rimantadine in the prophylaxis of influenza A infection. N. Engl. J. Med. 307, 580–584.
- Elder KT, Bye JM, Skehel JJ, Waterfield MD, Smith AE (1979): In vitro synthesis, glycosylation and membrane insertion of influenza virus haemagglutinin. *Virology* **95**, 343–350.
- Grambas S, Hay AJ (1992): Maturation of influenza A virus haemagglutinin estimates of the pH encountered during transport and its regulation by M2 protein. *Virology* 190, 11–18.
- Holsinger LJ, Lamb RA (1991): Influenza virus M2 integral membrane proteins a homotetramer stabilized by formation of disulfide bonds. *Virology* 183, 32-43.
- Lamb RA, Zebedee SL, Richardson CD (1985): Influenza virus M2 protein is an integral membrane protein expressed on the infected cell surface. *Cell* 40, 627-633.

- Härri E, Loeffler W, Sigg HP, Staechelin H, Tamm C (1963): Über die Isolierung der Stoffwechselprodukte aus Penicilium Brefeldinianum Dodge. Helv. Chim. Acta 46, 1235–1243.
- Hull JD, Gilmore R, Lamb RA (1988): Integration of a small integral membrane protein, M2 of influenza virus into the endoplasmic reticulum: Analysis of the internal signal-anchor domain of a protein with an ectoplasmic NH₂ terminus. J. Cell Biol. 106, 1489–1498.
- Kato S, Shigehito I, Noguchi T, Naito H (1989): Effects of Brefeldin A on the synthesis and secretion of egg white proteins in primary cultured oviduct cells of laying Japanese quail (Coturnix coturnix japonica). Biochim. Biophys. Acta 991, 36-43.
- Lippincott-Schwartz J, Yuan LC, Bonificano JS, Klausner RD (1989): Rapid redistribution of Golgi proteins into the ER in cells treated with Brefeldin A: evidence for membrane cycling from Golgi to ER. *Cell* 56, 801–813.
- Lippincott-Schwartz J, Donaldson JG, Schweizer A, Berger EG, Hauri H-P, Yuan LC, Klausner RD (1990): Microtubule-dependent retrograde transport of proteins into the ER in the presence of Brefeldin A suggests an ER recycling pathway. *Cell* 60, 821-836.
- Low SH, Tang BL, Wong SH, Hong W (1992): Selective inhibition of protein targeting to the apical domain of MDCK cells by Brefeldin A. *J. Cell Biol.* 118, 51–62.
- Miller SG, Carnell L, Moore H-PH (1992): Post-Golgi membrane traffic: Brefeldin A inhibits export from distal Golgi compartments to the cell surface but not recycling. J. Cell Biol. 118, 267–283.
- Misumi Y, Miki A, Takatsuki A, Tamura G, Ikehara Y (1986): Novel blockade by Brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. *J. Biol. Chem.* **261**, 11398–11403.
- Oda K, Hirose S, Takami N, Misumi A, Takatsuki A, Ikehara Y (1987): Brefeldin A arrests the intracellular transport of a precursor of complement C3 before its conversion site in rat hepatocytes. *FEBS Lett.* **214**, 135–138.
- Palade GE (1975): Intracellular aspects of the process of protein secretion. *Science* **189**, 347–358.
- Palade GE (1982): Problems in intracellular membrane traffic in membrane recycling. *Ciba Foundation Symposium* **92**, 1–14.
- Pelham HRB (1991): Multiple targets for Brefeldin A. Cell 67, 449-451.
- Shimbo K, Brassard DL, Lamb RA, Pinto LH (1996): Ion selectivity and activation of the M2 ion channel of influenza virus. *Biophys. J.* **70**, 1335–1346.
- Sugrue RJ, Bahadur G, Zambon MC, Hall-Smith M, Douglas AR, Hay AJ (1990): Specific structural alteration of the influenza haemagglutinin by amantadine. *EMBO J.* 9, 3469–3476.
- Sugrue RJ, Hay AJ (1991): Structural characteristics of the M2 protein o influenza A viruses: evidence that it forms a tetrameric channel. *Virology* 180, 616–624.
- Takatsuki A, Tamura G (1985): Brefeldin A, a specific inhibitor of intracellular translocation of vesicular stomatitis vi-

- rus G protein and inhibition of its surface expression. *Agric. Biol. Chem.* **49**, 899–902.
- Varečková E, Betáková T, Mucha V, Soláriková L, Kostolanský F, Waris M, Russ G (1995): Preparation of monoclonal antibodies for the diagnosis of influenza A infection using different immunization protocols. *J. Immunol. Meth.* **180**, 107–116.
- Wagner M, Rajasekaran AK, Hanzel DK, Mayor S, Rodriguez-Boulan E (1994): Brefeldin A causes structural and functional alterations of the *trans*-Golgi network of MDCK cells. *J. Cell Sci.* **107**, 933–943.
- Wood SA, Park JE, Brown WJ (1991): Brefeldin A causes a microtubule-mediated fusion of the trans-Golgi network and early endosomes. *Cell* 67, 591–600.
- Závodská E, Cmarko D, Cmarková J, Čiampor F (1995): The transport of the hemagglutinin and M2 protein in influenza virus-infected MDCK cells. The microscopical study with Brefeldin A. *Proceedings of Multinational Congress on Electron Microscopy*, Stará Lesná, pp. 154–155.
- Zebedee SL, Lamb RA (1988): Influenza A virus M2 protein: Monoclonal antibody restriction of virus growth and detection of M2 in virions. *J. Virol.* **62**, 2762–2772.